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Over an extended period of time, exposure to severe loading
very often results in fracture or crack damage of structures
which can ultimately lead to fatigue failure. The research
described in this paper, concerns the development of tech-
niques with the potential to detect and track progressive
fracture by observing changes in the identified system pa-
rameters: mass, stiffness and damping matrix elements.

The method, called the system identification technique, has
two steps: a process of retrieving the eigenvalues and eigen-
vectors during a dynamic response phase and the determination
of mass, stiffness and damping matrices from these values.

The proposed technique was verified on cantilever beam con-
tinuous structure systems through finite element simulation
and experimental studies., Results from both studies have
indicated the feasibility of damage detection by identifying
the structural system matrices. For a cantilever beam system,
the location of crack type damage seems to be best identified
by the flexibility matrix which is the inverse of the stiff-

ness matrix.

.

1. INTRODUCTION

Many ships and offshore structures have a
predicted design T1ife which is generally based
on conservative design criteria to compensate
for uncertainties in the load environment and
associated damage effects. Severe loading over
an extended period of time, may Tead to fatigue
failures of exposed structures. Initiation and
propagation of cracks change the structural re-
sponse of the system which manifests in a
change in the dynamic equations of motion.
Therefore, the System Identification Technique,
from which the dynamic equations of motion may
be deduced from experimental data, offers the
potential of being able to detect cracks, flaws
and other features by observing changes of
structural parameters such as mass, stiffness
and damping elements of matricés. .

The identification and modeling of multi-
degree of freedom dynamic systems through the
use of experimental approaches, is a problem of
considerable importance in the area of system
dynamics, automatic controls and structural
analysis. Indication of the wide range of ap-
plicability of this subject is shown in the
Titerature related to system parameters iden-
tification efforts (Refs. 1-11).

Purely mathematical model representation
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of the real problem may prove to be a very pow-
erful tool for the analysis and design of com-
plex structural systems. The mathematical
model representation could, of course, be de-
vised from a theoretical understanding of the
system and its components, or from a finite
element model in the case of purely structural
systems. These techniques are inferior com-
pared to one which is based on an actual exper-
imental response approach. Furthermore, when
the system becomes more complex and sophisti-
cated, it becomes more difficult to understand
its mechanisms, and, therefore, to develop an

“appropriate theoretical model, which will give

a good prediction of its dynamical response.

For these reasons, the objective of this
research is to develop a new and more accurate
dynamic system identification technique for de-
termination of dynamic equations of motion,
from dynamic response data, of a system with
high modal density. ~This project seeks to dem-
onstrate that it is feasible to detect damage
in structures due to existing cracks or flaws
by observing the changes of structural param-
eters as elements of mass [M], stiffness [K] and
damping [C] matrices, and also to abserve
changes in the power spectral density and res-
onant freguencies.

The ultimate objective of the subsequent
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research is to correlate the cracks, flaw sizes
and their Tocation with the obtained changes in
system parameters.

2. MATHEMATICAL MODEL OF THE SYSTEM
IDENTIFICATION TECHNIQUE

Let us begin by considering a structural
system which can generally be represented by an
N degree-of-freedom linear system. The dynam-
ics of the system are governed by its equation
of motion:

M1 [X1 + [c] (X1 + [K] [X] = [f] (1)

where [X], [X], [X] are the displacement, ve-
locity, and acceleration column vectors of de-
gree N, respectively. Force [f] is also an
N-column vector. The [M], [K], and [C] are N
x N mass, stiffness, and damping matrices, re-
spectively.

The system identification technique in-
volves the identification of [M], [X], and [C]
matrices of the system, from the known re-
sponses [X], [X], [X] and the known forcing
function [f].

Adding to equation (1) a trivial differen-
tial equation:

MI[X]-[MI[X1=0 (2)

a set of equations which describe the motion of
the same structural system are obtained:

Lo3jm] [%] , FImafroq) [%] = [o (3)
[M1{Ec]) | X Lo KT} [ x f
or in the condensed form:

(0] [q] + (€] [q] = [0l

where the matrices are defined as:
) -[feHi]
ra = [4] o1 = 4]t =)

After performing the Laplace transformation, we
obtain:

[8 (s)1 [q (s)] = [q (s)] (5)
where

[B (s)] = @ols + [E{

is the system matrix. It can be proved that
[D] and [E], which contain the system's [M],
[C], [K] matrices, can be represented by the
eigenvalues Py» and eigenvectors [¥y], produced
from the system matrix and determined by the

homogeneous equation {(Ref. 12):
e (Pl [y l=0 {6)

Hhen TM], [K], and [C] are symmetric, the fol-
lTowing expressions can be proved:

(03 = 1v3" 7013 [v1”! )
[E] = [v17'T[-p] [v]"!
where

Y = EY]s y?_a }’3, T yN]

is an eigenvector matrix while the eigenvalues
matrix is:

i Py 0 0
0 Pz
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It can be shown that the system's transfer
function could be represented as a function of
eigenvalues and eigenvectors, that is:

- N T x T
[H(s)1= [¥I[s-P]7'0¥1T=E | Yicde | Y
k=1 s-py s—pﬁ

(8)

or

[ak] (9)

where

P, = kth root of {det (B(s)) = 0}

[ak]= residue matrix for the kth root

In general, the ij-th element of the residue
matrix [ak] is written as:

which provides the connection between residues
and eigenvectors.

The transfer function H(s) is experimentally
measurable. Using various curve-fitting proce-
dures (Refs. 13-16), the eigenvalue and eigen-
vectors can be retrieved from the transfer
function as indicated by Equations (9) and (10).

The proposed technique has been verified on a
two-degree of freedom system simulated by analoc
computer circuits (Ref. 17). The results indi-
cated that the system identification could ac-
curately determine the mass, stiffness and
damping matrices of a Jlumped spring-mass-dashpot
system whose degree of freedom is low. The work
described below includes the continuing verifi-
cation of the stated technique on continuous
structural systems. The physical system con-
sidered was a cantilever beam. The verification
was conducted in two ways: NASTRAN finite ele-
ment simulation and experimental measurement.



3. NUMERICAL APPROACH IN DETECTION OF DAMAGE
OF A CANTILEVER BEAM

In the measurement of real structure re-
sponse signals, error often exists. Such error
can greatly affect the accuracy of the identi-
fied system matrices, especially when the
degree of freedom of the structural system is
high. At the initial stage of development of
the system identification technique, it is
desirable to generate structural signals as
close to theoretical values as possible to be
used as verification of the technique. Numer-
ical approach was adopted in which a cantilever
beam was modeled with the NASTRAN computer pro-
gram to generate the numerical vibration sig-
nals. :

The mesh configuration of the finite ele-
ment model of the beam is shown in Fig. 1. The
dimension of the beam is 1" wide, 12" long, and
1/8" thick. The model is composed of 200
CQUAD4 bending elements of MSC/MASTRAN version
of the finite element method. The material of
the beam is mild steel whose properties are:

Young's Modulus E = 3.0 x 107 1b/1'n2

0.33
7.557 x 10°% slug/in

Poisson Ratio v

Mass Density p

Six stations were chosen from which the
frequency response functions were taken. These
are labeled stations 1 through 6, located along
the beam center Tine and separated 2 inches
apart (Fig. 1). Dynamic forces were applied at
station 2. Transfer functions at the six sta-
tions, which are defined as the ratio of the
Fourier Transform of the dynamic responses at
the six stations to that of the input force at
station 2, were obtained using NASTRAN modal
analysis method. Dampings were introduced into
the system by adding artificial modal damping
coefficient to each mode. The attained trans-
fer functions containing no noise except the
numerical inaccuracies were used as input data
for theoretical verification of the identifica-
tion technique.

The frequencies, dampings and the ampli-
tudes of vibration at the six stations were
obtained using a frequency domain curve fitting
routine. This constituted the first phase of
the signal processing which retrieved eigen-
values and eigenvectors from the system's
dynamic responses. The second phase of the
signal processing is to construct the [M], [C],
[K] matrices from the eigenvalues and eigen-
vectors.

To demonstrate the capability of damage
detection of the proposed technique, two grid
points on each side of the beam, located 3
inches away from the clamped edge, were
released by splitting each grid point into two
(Fig. 2b). The splitting of the two grid
points induced first stage damage to the struc-
ture. Again the computer programs were run to
obtain the frequencies, dampings and the [M],

[c], [K] matrices for the damaged structure.

Two more stages of damage were introduced
and the same system identification procedure
was carried out for all the damage cases. In
the second damage stage, two grid points on
the second rows from each side of the beam,
located 3 inches from the clamped edge, were
released (Fig. 2c). In the third damage stage,
two additional grid points on the third rows
were released (Fig. 2d).

The severeness of the damage induced by
splitting the grid points can be demonstrated
by the resulting frequency changes which, as
seen from Table 1, are very small. The mass
matrices obtained for the four damage cases are
all close to diagonal with off-diagonal ele-
ments one or two order of magnitude smaller
than the diagonal elements. The diaaonal ele-
ments of the mass matrices are listed in Table
2, which show very small changes (< 1%) for the
damages produced by splitting the grid points.
Because of the complex nature of the damping
mechanism, the obtained damping matrices will
not be correlated to their physical implica-
tions. For the obtained stiffness matrices,
it was found that their inverses, the flexibil-
ity matrices, can provide better physical
correlation for a cantilever beam system. The
flexibility matrices are near diagonal, whose
diagonal elements are listed in Table 3 for
the four damage cases. It is found from these
values that for response stationsbefore the
damage location the flexibility does not change
significantly, while for response stations
after the damage locationthe flexibilities
change progressively according to the severe-
ness of damage and the distances from the dam-
age location. This trend is illustrated by
the graphical depiction of Fig. 3.

To investigate the correlation between the
location of damage and the changes in the ele-
ments of the flexibility matrix, theoretical
derivation can be conducted to obtain the ana-
lytical expression of the flexibility matrix.
The expressions of the diagonal elements of
the flexibility matrix of a cantilever beam are
listed in the Appendix for the six response
stations. As can be seen from the Appendix,
the elements of the flexibility matrix are
algebraic sums of terms inversely proportional
to the local stiffness, E5 I;. The progressive
changes in the matrix elements due to the
change in local stiffness at a particular sta-
tion are clearly displayed in the analytical
expressions.



TABLE 1

Natural Frequencies in Hz for the NASTRAN Simulated Responses
of the Cantilever Beam with Four Damage Cases

Modes No_Damage 1st Stage Damage
1 24.99 24.970
2 157.67 157.66
3 443 .82 443,53
4 873.60 872.83
5 1446.93 1446.46
6 2136.62 2135.90

2nd Stage Damage 3rd Stage Damage
24.828 24,499
157.62 157.53
441.70 437 .55
.868.36 858,68
1444 .18 1439.11
2132.73 2125.30

TABLE 2

Diagonal Elements of the Mass Matrices (10'3 slugs)

Stations No Damage 1st Stage Damage
1 0.1314 0.1313
2 0.1979 0.1987
3 0.2038 0.2028
4 0.2008 0.2004
5 0.2011 6.2017
6 0.1923 0.1927

2nd Stage Damage 3rd Stage Damage
0.1318 0.1312
0.1995 0.1989
0.2040 0.2041
0.2008 0.2010
0.2021 0.2035
0.1931 0.1943

TABLE 3

Diagonal Elements of the Flexibility Matrices (1073 in/1b)

Stations No Damage 1st Stage Damage
1 0.5033 0.5016
2 3.9860 3.9756
3 14.343 14.391
4 31.540 31.940
5 62.948 : 62.425
6 101.66 107.81

2nd Stage Damage 3rd Stage Damage

0.5031 0.5021

3.9976 4.0220
14.430 14.901
31.803 33.063
62.389 64.624
102.40 105.34

4, EXPERIMENTS WITH A CANTILEVER BEAM

In addition to the numerical verification
of the system identification technique de-
scribed in section 2 as applied to a continuous
structural system, an experimental verification
was also conducted. A cantilever beam having
dimensions 19-1/2 inches long, 1 inch wide, and
1/4 inch thick was used in the experiment. The
beam was made of aluminum, with Young's modulus
1.03 x 107 1b/in%, Poisson's,ratio v 3 0.33 and
mass density p = 2.485 x 10™% slug/in>. Six
accelerometers were attached to the beam at
six stations (Fig. 4). A hammer was set up to

excite the aluminum cantilever beam with tran-
sient or random impact at station 5, as shown
in Fig. 5a. The transfer functions from the
impact station to any accelerometer station
were obtained by feeding the output accelera-
tion signal and input forcing function into a
spectrum analyzer: the Nicolet 660B dual
channel FFT analyzer supported by a Data Gen-
eral MP/200 computer (see Fig. 5b). In the
analyzer, the input and output signals were
digitized and the Fast Fourier Transform of the
signal was performed. The instantaneous trans-
fer functions were obtained by dividing the two
spectra. The final transfer function was ob-



tained by averaging a series of instantaneous
transfer functions.

The obtained transfer functions were
processed further, according to the mathemati-
cal procedure suggested by the proposed struc-
ture identification technique. The final re-
sults are represented in the form of structural
matrices [M], [C], and [K]. It should be em-
phasized that the phase 1 (transfer function)
was experimentally accomplished, in contrast to
the finite element analysis described pre-
viously. As such, this is a totally experimen-
tal approach which will be an effective and
useful technical approach for damage detection.

The saw cut on the cantilever beam, intro-
duced between stations 2 and 3, represents the
damages of the structure in the experiment
(Fig. 4). The frequencies and damping values
of the lowest vibration modes were obtained
from the transfer functions for no cut case and
the cut case (Table 4). Significant changes
due to cut exist in the experimentally deter-
mined frequencies. Table 5 and 6 list the
diagonal elements of the mass and flexibility
matrices for the no cut and cut cases. It is
also found that the damage introduced by the
saw cut results with significant changes in the
flexibility elements.

TABLE 4
Experimental Values of Frequencies and Damping Ratios of the Aluminum Cantilever Beam
Modes NO CUT CUT CASE
Natural Damp. Natural Damp .
Freq. (Hz) Ratio (%) Freq. (Hz) Ratio (%)
1 19.53 0.360 19.00 0.247
2 122.05 0.241 115.85 0.183
3 339.26 0.125 332.36 0.0788 .
4 661.73 0.0946 646 .91 0.0805
5 1085.22 0.120 1037.46 0.0979
6 1594.59 0.0974 1591.36 0.0973
TABLE 5
Diagonal Elements of the Mass Matrices (10'6 slugs)
Stations No_Cut Cut
1 2.9460 2.8029
2 6.7463 6.0645
3 6.9833 7.8842
4 7.0791 8.3550
5 7.2694 7.9536
6 6.4664 6.5813
TABLE 6
Diagonal Elements of the Flexibility Matrices (in/1b)
Stations No Cut Cut
3 0.3257 0.2526
2 1.8184 1.4985
3 7.5954 7.8514
4 18.594 21.003
5 33.817 51.553
6 66.075 87.246




Theoretical study, as illustrated by the
results of NASTRAN simulation, indicates that
the diagonal elements of the flexibility matrix
[F] should deviate in an orderly fashion with
respect to the location of the damage. Com-
paring the flexibility matrices of the cases
cut and no cut (Fig. 6), this orderly deviation
does exist in the diagonal elements and allows
one to identify the location of the cut.

5. CONCLUSIONS AND DISCUSSIONS

The feasibility of using the system iden-
tification technique for a continuous structur-
al system, such as a cantilever beam, has been
demonstrated. Both the numerical simulation
and experimental verification indicate that the
technique is capable of identifying structural
damages. Furthermore, for a cantilever beam,
the location of the damage can be identified
by observing the changes in the diagonal ele-
ments of the flexibility matrix.

However, to obtain useful results for more
practical purposes, a number of improvements to
the technique will be necessary. In the exper-
iment conducted, the cut made to the cantilever
beam was considered a very severe structural
damage, thus resulting in significant changes
of the system's matrices and made the system
identification possible. For real applications
damages of a precatastrophy type are usually
very small. If the error during the signal
processing is large enough to suppress the
deviations in [M], [C], [K] matrices due to
damages, then it is impossible to detect
structural damages by observing changes in the
identified [M], [C], [K] matrices. Therefore,
the requirement of high accuracy signal
processing is essential for practical purposes.

For the present system identification
technique, the accuracy can be controlled in
three steps: (1) the signal acquisition in
vibration measurements; (2) retrieval of the
system's eigenvalues and eigenvectors; and
(3) conversion of eigenvalues and eigenvectors
to the [M], [C], and [K] matrices. The first
step requires careful calibration of the mea-
surement transducers. The second step in-
volves the accuracy of the analog to digital
signal conversion and numerical accuracy in the
proper eigenvalue retrieval algorithm. The
third step is purely numerical and consists
only of a series of matrix operations.

In our present research, an aluminum
cantilever beam of sufficient length system has
been used. This retained the system in lower
vibration frequencies so that the Towest six
modes were well within the accelerometer re-
sponse characteristics. Attention has also
been given to the structural symmetry so that
unwanted vibrations, such as torsional modes,
were eliminated. Efforts were directed to im-
prove the measurement accuracy.

New mathematical approaches to convert the
eigenvalues and eigenvectors to the [M], [C],
and [K] matrices can be pursued to provide
better accuracy. For example, one can use only
matrices of dimension N x N for an N-degree of
freedom system in the computation algorithms,
As compared to the system matrices of dimension
2N x 2N, used in the present research, such
approach contains four times less the number cof
unknown variables. It is expected that accura-
cy will be improved by the reduction of matrix
dimensions in the numerical array operations.

For a continuous structural system, the
number of degrees of freedom is infinity. If
it is to be modeled with an N degree-of-freedom
[M], [c], and [K] matrices, then the conditions
under which the system identification procedure
is proper should also be verified for practical
application. '

APPENDIX: Diagonal Elements of the Flexibility
Matrix of a Cantilever Beam
2

11 = 26k

_ 2 2 2
fop = 26y (Lyy" + Lyply + L7 )+ &l

) 2 2 2
f33 = 26)(Ly; *hstes * bas )+ 26,(Lyg" ¢
Lylpg * L32) + 2650,
_ 2 2 2
fag = ZG](L]4 + !.124L24 + L24 % + ZGZ(L24 +2
Loglag ; Lyg?) + 265(Lgy" + Lygly + 147)
+ 2G4L4
) 2 2 2
fog = 261 (Lyg" + Lyshas * Lo % + 26y (Lyg" *
Loglss + Las ) + 2G3“32 * Lastag * Les
+ 26, (Lgg" *+ Lygly + L") + 2Gglg
) 2 2 2
fog = 261 (Lyg + L}sts * Lo % *+ 26y (Lyg" *
Loglag * L3g ) + 263{Llgg™ + Laglyg *
2 2 2
Lie % + 26, (Lyg™ *+ Lyglsg * Lgg ) + 265
(L56 + L56L6 + L6 ) + 265L6
;= Li L= .+ .. .4+L.
BT PR . j

where Li is the distance between response
stations

I. the moment of inertia of the beam
cross section

E. the local Young's Modulus
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a. Set-up of cantilever beam with mechanism b.
for application of excitation force

NICOLET 660B, dual channel FFT analyzer,
supported by Data General MP/200 computer

Fig. 5 Set-Up of Cantilever Beam
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